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ABSTRACT 
Natural convection of a laminar two-dimensional boundary-layer flow of non-Newtonian 

fluids over a horizontal circular cylinder with the heating condition of uniform surface heat 

flux has been studied using a modified power-law viscosity model. In this model, there are no 

unrealistic limits of zero or infinite viscosity; consequently, no irremovable singularities are 

introduced into boundary-layer formulations for such fluids. Therefore, the boundary-layer 

equations can be solved numerically by using marching order implicit finite difference 

method with double sweep technique. Numerical results are mostly presented for the case of 

shear-thinning as well as shear thickening fluids in terms of the shear rates. Fluid velocity and 

temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-

friction and local Nusselt number respectively are also presented. 

 

1.  INTRODUCTION 

Natural convection laminar flow of non-Newtonian power-law fluids from a horizontal 

circular cylinder with uniform heat flux presents an important role in numerous engineering 

applications those are related with pseudo-plastic fluids. The pseudo-plastic fluid is 

characterized by a constant viscosity at very low shear rates, a viscosity which decreases with 

shear rate at intermediate shear rates and an apparently constant viscosity at very high shear 

rate. The interest in skin-friction and heat transfer problems involving power-law non-

Newtonian fluids has grown in the past half-century. An excellent research on non-Newtonian 

fluids was given by Boger [1]. Acrivos [2] was the first to consider boundary-layer flows for 

such non-Newtonian fluids. Since then, a large number of papers have been published, due to 

their wide relevance in pseudo-plastic fluids like chemicals, foods, polymers, molten plastics 

and petroleum production and various natural phenomena.  

An entire assessment of these literatures was impractical; however, selected papers are listed 

here to provide starting points for a broader literature search [3-15]. In the boundary-layer 

study, they used the traditional power-law viscosity correlation that viscosity becomes infinite 

for small shear rates or vanishes for the limits of large shear rates, which are giving the 

unrealistic physical results. Because an infinite viscosity corresponds to solids and no 

frictionless fluid has ever been found, a partial set of measured viscosity shear relations is not 

sufficient for a boundary-layer study. 
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In recent times proposed modified power-law correlation is sketched for various values of 

power index n in Fig. 2 and this model is formulated based on the available experimental data 

for the non-Newtonian fluids (see Boger [1]). It is clear that the new correlation does not 

contain the physically unrealistic limits of zero and infinite viscosity displayed by traditional 

power-law correlations [2]. The modified power-law, in fact, fits measured viscosity data 

well. The constants in the proposed model can be fixed with available measurements and are 

described in detail in Yao and Molla [16]. The boundary-layer formulation on a flat plate is 

described and numerically solved for non-Newtonian fluid in Yao and Molla [16, 17] and the 

associated heat transfer for two different heating conditions is reported in Molla and Yao [18, 

19] for shear-thinning fluid. The boundary-layer formulation along an isothermal horizontal 

circular cylinder is also described and numerically solved for non-Newtonian fluid in 

Bhowmick and Molla [20] for the case of shear-thinning as well as shear thickening fluids. In 

this investigation, the behavior of both shear-thinning and shear-thickening fluids on the 

natural convection laminar flow with uniform heat flux along a horizontal circular cylinder 

are studied by choosing the power-law index as n (= 0.6, 0.8, 1.0, 1.2, 1.4) to fully 

demonstrate the performance of various non-Newtonian fluids. 

It is precious to message that the soundness of the laminar boundary-layer theory has been 

well established for nearly a century. Power-law correlations have also been used for almost 

half a century. It is well known that they can correlate a major part of the available data. The 

recently proposed modified power-law simply modifies the power-law to fit available data 

better at its two ends, because a power-law model is an undeviating model that is used to fit 

experimental data. 

2. FORMULATION OF THE PROBLEM 

A two-dimensional steady laminar natural convection boundary-layer of a non-Newtonian 

fluid over a horizontal circular cylinder of radius „a‟ with uniform surface heat flux and a 

distributed heat source of the form  TTg  has been considered. The viscosity depends 

on shear rate and is correlated by a modified power-law. We consider shear-thinning and 

shear-thickening situations of non-Newtonian fluids. It is assumed that a surface heat flux wq  

is applied to the cylinder; T  is the ambient temperature of the fluid and T is the temperature 

of the fluid. The configuration considered is as shown in Fig. 1. 

 

Fig. 1 The flow model and coordinate system. 
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Under the above assumptions, the boundary-layer equations governing the flow and heat 

transfer are 
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Where u  and v  are velocity components along the x  and y  axes,   is the fluid density,   

is the dynamic viscosity of the fluid in the boundary-layer region, g is the acceleration due to 

gravity, β is the coefficient of thermal expansion, k is the thermal conductivity and Cp  is the 

specific heat at constant pressure. The kinematic viscosity  = µ/ is correlated by a modified 

power-law, which is 
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The constants 
21  and are threshold shear rates, which are given according to the model of 

Boger [1], K is the dimensional constant, for which dimension depends on the power-law 

index n. The values of these constants can be determined by matching with measurements. 

Outside of the preceding range, viscosity is assumed to be constant; its value can be fixed 

with data given in Fig. 2. 
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Fig. 2 Modified power-law correlation for the power-law index n (= 0.6, 0.8, 1.0, 

1.2, 1.4) while 5
21 10 and 1.0   . 

The boundary conditions for the present problems are 
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(6) 

Where, 
1  is the reference viscosity at

1 , θ is the non-dimensional temperature of the fluid, 

Gr is the Grashof number and Pr is the Prandtl number. Using equation (6) in equations (1-4) 

we get the following non-dimensional equations: 
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The length scale associated with the non-Newtonian power-law is 
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The corresponding boundary conditions are  
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Now we introduce the parabolic transformation: 
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Substituting variable (13) into equations (7-10) leads to the following equations: 
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The correlation (17) is a modified power-law correlation first presented by Yao and Molla 

[16]. This correlation describes that if the shear rate  lies between the threshold shear 

rates
21  and  , then the non-Newtonian viscosity, D, varies with the power-law of γ. On the 

other hand, if the shear rate  does not lie within this range, then the non-Newtonian 

viscosities are different constants, as shown in Fig. 2. This is a property of many measured 

viscosities. 

Equation (14-16) can be solved by marching downstream with the leading edge condition 

satisfying the following differential equations, which are the limits of equations (14-16) as 

X→0. 
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The corresponding boundary conditions are  
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Equations (14-16) and (18-20) are discretized by a central-difference scheme for the diffusion 

term and a backward-difference scheme for the convection terms. Finally, we get an implicit 

tri-diagonal algebraic system of equations, which can be solved by a double-sweep technique. 

The normal velocity is directly solved from the continuity equation. The computation is 

started at X=0 and marches to downstream to X=3.1416. After several test runs, converged 

results are obtained by using 005.0  and  0025.0  YX . 

In practical applications, the physical quantities of principle interest are the local skin-friction 

coefficients Cf and the local Nusselt number Nu, which are  
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3. RESULTS AND DISCUSSION 

The numerical results are presented for the non-Newtonian power-law of shear-thinning fluids 

(n = 0.6 and 0.8) and the shear-thickening fluids (n = 1.2 and 1.4) as well as the Newtonian 

case (n = 1) while Prandtl number, Pr = 10 and 50. Based on the experimental data of Boger 

[1] the thresholds shears 21   and    have been chosen as 0.1 and 10
5
, respectively. The 

obtained results include the shear rates, velocity and temperature distribution, and the wall 

shear stress in terms of the local skin-friction coefficient,   5/1
4/ XGrC f

 and the rate of heat 

transfer as a form of the local Nusselt number,   5/1
4/


XGrNu  for the wide range of the 

power-law index n (= 0.6, 0.8, 1.0, 1.2, 1.4). The singularity experienced at the leading edge 

for the traditional power-law correlation has been successfully removed by using the modified 

power-law correlation. Since the shear-stress at the leading edge is inversely proportional to 

  5/1
4/ XGr  and so is infinite there,   1

12 /



n

D   at the leading edge. 

Figures 3(a-f) show the corresponding shear rates for Pr = 10 and 50, respectively. For the 

shear-thinning fluids (n = 0.6 and 0.8), the boundary-layer thickness decreases more at the 

down stream region than for the shear-thickening fluids (n = 1.2 and 1.4). The boundary-layer 

thickness for Pr = 50 is less than half of the boundary-layer for Pr = 10. All the figures for Pr 

= 10 are comparatively smooth at Y axis than for Pr = 50. At X = 3 for Pr = 50, both the fluids 

(shear-thinning and shear-thickening) are same after the leading edge to down stream regions, 

but for Pr = 10 at X = 3 the fluids are showing different up to down stream regions. Shear 

rates of the fluids are maximum at the middle (X = 2) of the cylinder. Again, at X = 1 the 

shear rates are higher than at X = 3. Shear-thinning fluids are larger than shear-thickening 

fluids. Again, the boundary-layer at the initial wall of the shear rates is thinner than the 

middle or last position of the cylinder. 
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Fig. 3    Shear rates for different n at (a) X = 1, (b) X = 2, (c) X = 3 at Pr = 10 and (d) 

X = 1, (e) X = 2, (f) X = 3 at Pr = 50. 
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 Fig. 4   Velocity distribution for different n at X = 2 for (a) Pr = 10 and (b) Pr = 50. 

The velocity distribution as a function of Y at X = 2 for the different power-law indices (n = 

0.6, 0.8, 1.0, 1.2, 1.4) are presented in Figs. 4(a) for Pr = 10 and 4(b) for Pr = 50, respectively. 

Fig. 4 shows that for shear-thinning fluids (n=0.6 and 0.8), the velocity increases due to the 

decrease of viscosities at the down stream region; consequently, the boundary–layer is 

thinned. On the other hand, for shear-thickening fluids (n=1.2 and 1.4), the velocity decreases 

slowly and the boundary-layer is thickened as the fluid becomes more viscous. We may 

conclude that for Pr = 50, the fluid velocity is smaller than that for Pr = 10 and the boundary-

layer thickness is larger for Pr = 50 than that for Pr = 10. 

The corresponding temperature distribution are plotted for Pr = 10 and 50 in Figs. 5(a) and 

5(b), respectively. At the leading edge temperature of shear-thickening fluids is higher than 

shear-thinning fluids. For both of these Prandtl numbers, at the down stream region, in the 

case of shear-thinning fluids, the variation of temperature in the boundary-layer is smaller 

than that of the shear-thickening non-Newtonian fluids. As expected, the thermal boundary-

layer is thinner for larger Prandtl numbers. 
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Fig. 5   Temperature distribution for different n at X = 2 for (a) Pr = 10 and (b) Pr = 50. 

The effects of the non-Newtonian power-law index n (=0.6, 0.8, 1.0, 1.2, 1.4) on the variation 

of the wall shear stress   5/1
4/ XGrC f

 are shown in Fig. 6a for Pr =10 and in Fig. 6b for Pr 

=50. The results from these figures clearly show that at the leading edge of non-Newtonian 

fluids, whose effects start from for  
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    Fig. 6   Wall shear stress for different values of n: (a) Pr =10, (b) Pr = 50. 

2.0X  Pr = 10 and 3.0X  for Pr = 50, the wall shear stress decreases for the shear-

thinning fluids (n=0.6 and 0.8) and increases for the shear-thickening fluids (n = 1.2 and 1.4). 

At the down stream region, there is a similarity solution at 3X  and at X ; the 

boundary-layer of shear-thinning fluids is greater than that of shear-thickening fluids. As 



74                                                                                             Journal of Presidency University 

 

expected, the boundary-layer is thinner for larger Prandtl number. Figs. 7(a) and 7(b) 

represent the local-rate of heat transfer in terms of the local Nusselt number   5/1
4/


XGrNu  for 

Pr = 10 and Pr = 50, respectively. The local Nusselt number increases for 1n  and decreases 

for 1n  at the leading edge of non-Newtonian fluids, whose effects start from  
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 Fig. 7    Local Nusselt number for different values of n: (a) Pr =10, (b) Pr = 50. 

18.0X  for Pr = 10 and 32.0X  for Pr = 50. At the down stream region, heat transfer is 

similar at X  only for Pr = 50. 

4. Conclusions 

The proposed modified power-law correlation agrees well with the actual measurements for 

non-Newtonian fluids; consequently, it is a physically realistic model. The problem associated 

with the non-removal singularity introduced by the traditional power-law correlations do not 

exists for the modified power-law correlation proposed in this paper. Therefore, the proposed 

modified power-law correlations can be used to investigate other heat transfer problems for 

shear-thinning or shear-thickening non-Newtonian fluids in boundary-layers. The 

fundamental mechanism is that the effect of non-Newtonian fluids eventually becomes 

dominant when shear rate increases within the threshold shear limits. We may summarize our 

obtained results as follows: 

 The boundary-layer thickness of the shear rates for Pr = 50 is less than half of the 

boundary-layer for Pr = 10. All the figures for Pr = 10 are comparatively smooth at Y 

axis than for Pr = 50. At X = 3 for Pr = 50, both the fluids (shear-thinning and shear-

thickening) are same after the leading edge to down stream regions, but for Pr = 10 at 

X = 3 the fluids are showing different up to down stream regions. 

 At the downstream region of the boundary layer, the variation of the temperature 

inside the boundary-layer is smaller for the case of shear-thinning fluids than that of 

the shear-thickening non-Newtonian fluids for all Prandtl numbers considered here.  
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 The boundary-layer thickness decreases more at the downstream region for the shear-

thinning fluids than that for the shear-thickening fluids. It is revealed that the 

boundary-layer thickness for Pr = 50 is almost half of the boundary-layer for Pr = 10. 

 It is observed that the local Nusselt number increases when 1n  and decreases when 

1n  at the leading edge of non-Newtonian fluids for both Prandtl number considered 

here. 

1. Nomenclature 

Cf Local skin-friction 

C Constant 

D Non-dimensional viscosity of the fluid 

a Radius of the circular cylinder 

g Acceleration due to gravity 

n Non-Newtonian power-law index 

k Thermal conductivity of the fluid 

Cp Specific heat at constant pressure 

Gr Grashof number 

2.    
K 

Dimensional constant 

3.    
N
u 

Local Nusselt number 

Pr Prandtl number 

T Dimensional temperature of the fluid 

Tw Surface temperature of the cylinder 

T  Ambient temperature 

vu ,  Velocity components along the yx,  axes, respectively 



76                                                                                             Journal of Presidency University 

 

4. yx,

 

Cartesian coordinate measured along the surface of the cylinder 

and normal to it respectively 

5. U
, 
V 

Dimensionless fluid velocities in the X, Y directions, respectively 

6. X Axial direction along the circular cylinder 

7. Y Pseudo-similarity variable 

Greek symbols 

  Thermal diffusivity 

 Thermal expansion coefficient 

  Fluid density 

  Dimensionless temperature of the fluid 

 Dynamic viscosity 

  (  /  ) kinematic viscosity 

1  Reference viscosity of the fluid 

  Shear rate 

 

REFERENCES 
[1] Boger, D. V., “Demonstration of upper and lower Newtonian fluid behavior in a pseudo 

plastic fluid,” Nature Vol. 265 January 13 1977, pp 126-128. 

[2] Acrivos, A., “A Theoretical Analysis of Laminar Natural Convection Heat Transfer to Non-

Newtonian Fluids,” AIChE Journal, Vol. 6, No. 4, 1960, pp. 584-590. 

[3] Tien, C., “Laminar Natural Convection Heat Transfer to Non-Newtonian Fluids,” Applied 

Scientific Research, Vol. 17, 1967, pp. 233-248. 

[4] Emery, F. H., Chi, S., and Dale, J. D., “Free Convection Through Vertical Plane Layers of 

Non-Newtonian Power Law Fluids,” Journal of Heat Transfer, Vol. 93, 1970, pp. 164-171. 

[5] Dale, J. D., and Emery, A. F., “The Free Convection of Heat from a Vertical Plate to Several 

Non-Newtonian Pseudo Plastic Fluids,” Journal of Heat Transfer, Vol. 94, 1972, pp. 66-72. 

[6] Chen, T. V. W., and Wollersheim, D. E., “Free Convection at a Vertical Plate with Uniform 

Flux Conditions in Non-Newtonian Power Law Fluids,” Journal of Heat Transfer, Vol. 95, 

1973, pp. 123-124. 



Shear Rates Calculation on Natural Convection of Non-Newtonian Fluid over                     77 

a Horizontal Circular Cylinder with Uniform Surface Heat Fluxes 

  

[7] Shulman, Z. P., Baikov, V. I., and Zaltsgendler, E. A., “An Approach to Prediction of Free 

Convection in Non-Newtonian Fluids,” International Journal of Heat and Mass Transfer, 

Vol. 19, No. 9, 1976, pp. 1003-1007. 

[8] Som, A., and Chen, J. L. S., “Free Convection of Non-Newtonian Fluids over Nonisothermal 

Two-Dimensional Bodies” International Journal of Heat and Mass Transfer, Vol. 27, No. 5, 

1984, pp. 791-794. 

[9] Haq, S., Kleinstreuer, C., and Mulligan, J. C., “Transient Free Convection of a Non-

Newtonian Fluid Along a Vertical Wall,” Journal of Heat Transfer, Vol. 110, 1988, pp. 604-

607. 

[10] Huang, M. J., Huang J. S., Chou, Y. L., and Cheng, C. K., “Effects of Prandtl Number on Free 

Convection Heat Transfer from a Vertical Plate to a Non-Newtonian Fluid,” Journal of Heat 

Transfer, Vol. 111, Feb 1989, pp. 189-191. 

[11] Huang, M. J., and Chen, C. K., “Local Similarity Solutions of Free-Convection Heat Transfer 

From a Vertical Plate to Non-Newtonian Power Law Fluids,” International Journal of Heat 

and Mass Transfer, Vol. 33, No. 1, 1990, pp. 119-125. 

[12] Kim, E., “Natural Convection Along a Wavy Vertical Plate to Non-Newtonian Fluids,” 

International Journal of Heat and Mass Transfer, Vol. 40, No. 13, 1997, pp. 3069-3078. 

[13] Khan, W. A., Culham, J. R., and Yovanovich, M. M., “Fluid Flow and Heat Transfer in power 

Law Fluids Across Circular Cylinders: Analytical Study,” Journal of Heat Transfer, Vol. 128, 

Sept. 2006, pp. 870-878. 

[14] Denier, J. P., and Hewitt, R. E., “Asymptotic Matching Constraints for a Boundary-Layer 

Flow of a Power Law Fluid,” Journal of Fluid Mechanics, Vol. 518, 2004, pp. 261-279. 

[15] Denier, J. P., and Dabrowski, P. P., “On the Boundary-Layer Equations for Power-Law 

Fluids,” Proceedings of the Royal Society of London, Series A: Mathematical and Physical 

Sciences, Vol. 460, No. 2051, 2004, pp. 3143-3158. 

[16] Yao, L. S., and Molla, M. M., “Flow of a Non-Newtonian Fluids on a Flat Plate, 1: Boundary 

Layer,” Journal of Thermophysics and Heat Transfer, Vol. 22, No. 4, October-December 

2008, pp. 758-761. 

[17] Yao, L. S., and Molla, M. M., “Forced convection of Non-Newtonian Fluids on a Heated Flat 

Plate,” International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 5154-5159. 

[18] Molla, M. M., and Yao, L. S., “Flow of a Non-Newtonian Fluids on a Flat Plate, 2: Heat 

Transfer,” Journal of Thermophysics and Heat Transfer, Vol. 22, No. 4, October-December 

2008, pp. 762-765. 

[19] Molla, M. M., and Yao, L. S., “The Flow of Non-Newtonian Fluids on a Flat Plate With a 

Uniform Heat Flux,” ASME J. Heat Transfer, Vol. 131, 2009, 011702 

[20] Bhowmick, S., Molla, M. M., and Saha, S. C., “Non-Newtonian Natural Convection Flow 

along an Isothermal Horizontal Circular Cylinder,” American Journal of Fluid Dynamics 

(accepted). 


